
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 5, 593-596 (1985) 

SHORT COMMUNICATION 

EQUATION 
A NOTE ON THE STEADY-STATE ADVECTION-DIFFUSION 

J. C. FERRERI* 

C N E A ,  Gerencict Proteccidn Radioldgica y Seguridad, Av. del Libertador 8250, 1429, Capita1 Federal Argentina 

SUMMARY 

In this note we show that the numerical solution of the advection-diffusion equation can be improved by 
considering the asymptotic behaviour of its analytical solution. This is accomplished by including a correction 
term based on the numerical differentiation of the asymptotic (Pe >> 1, Pe being the Peclet number) solution. 
This correction forces the usual oscillations associated with centred schemes to disappear. 

BACKGROUND 

Let us assume that we are trying to find the solution for a problem 

L(u) = 0. 

by means of a discrete technique. Here, L represents a differential operator which we assume to be 
linear, elliptic and homogeneous. The non-homogeneous case can be treated similarly. 

Let the discrete version of equation (1) be represented by 

L h (  u) = 0. (2)  

(3) 

Then, a possible iterative scheme for the numerical solution of (2) is 

( I  - kLh)U"+' = U" - kLh(F).  

Equation (3) constitutes a 'fully implicit' approximation to equation (2) when L,(F) = 0, and can be 
considered as a pseudo-non-steady algorithm. In this equation I is the identity operator and k is the 
'time step'. 

Let us consider the last term of equation (3) .  Suppose for a moment that F is the analytical 
solution of equation (1). Then, if Lh is an exact representation of (1) (i.e. without any truncation 
error), then Lh(F)  = 0. The exact representation of a differential operator cannot be used in practice 
and L,(F) # 0. Now, if equation (3) is considered as the discrete representation for the numerical 
solution of (1) and U" -+ U"+' --t U for a high enough n, then 

Lh( U - F )  = 0. 

If we assume that L h  does not annihilate U - F ,  then U = F ,  which is an interesting (and obviously 
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expected) result. However, this does not naturally occur; instead, the converged result with actually 
satisfy 

Lh(U) = L/I(F). 
The role of the last term of equation ( 3 )  can now be made clear: it can provide a link between the 
computed solution and a known behaviour of the solution of equation (1). In many cases of 
physical interest, the solution of the governing equation (1) shows a boundary layer behaviour, and 
the usual discrete approximations often fail. The case of the solution of Burgers’ equation, with an 
outflow boundary layer, is a common example. The reason for the failure of the discrete 
representations usually lies in their poor resolution, within the boundary layer. In what follows we 
consider the improvement of the accuracy of the discrete solution of (1) for a given grid by 
means of a suitable specification of F ,  in connection with the a priori knowledge of the asymptotic 
behaviour of the solution of (1). 

Then, the basis for the specification of a linking function should be related to the asymptotic 
behaviour of the solution of equation (1). 

As can be seen from equation (3) ,  the effect of L,(F) consists in the spreading of the truncation 
error of the discrete representation of L over all the grid points. To a certain extent, the present 
approach resembles Emery’s technique’, which he employed for the proper treatment of 
singularities of heat generation in continuous media. 

In Emery’s technique the singularities exist and they originate a strong variation of the 
dependent variable (a boundary layer). In the present technique we added a distributed, fictitious 
source to account for the boundary layer behaviour of the solution, if there is any. Both methods 
have a common feature in the sense that L, must be a good approximation for L outside the 
boundary layer. 

In order to specify the problem (3), we must define the order of the approximation of L,. In the 
following, a three-point, second-order, space-centred approximation is considered for all cases. In 
the case of first-order derivatives, we employ Lagrange’s formula to evaluate the derivative at the 
central point (to account for the case in which the grid is variable). This formula reduces to the 
usual centred space approximation for constant grid spacing. 

In what follows, we show the advantages of incorporating the knowledge of the asymptotic 
behaviour of the solution into the computational algorithm. The example shown is limited in scope 
but is representative of the concept involved. 

THE STEADY ADVECTJON-DIFFUSION EQUATION 

This is the case considered in References 2-5, and is sometimes called the ‘tough’ problem, namely 

- Pe u’ + u” = 0; u(0) = 0, u( 1) = 1, (4) 
where the primes indicate differentiation with respect to the space co-ordinate x, Pe = VL/D is the 
Peclet number V is the constant transport velocity, L is length of the integration domain and D is 
the diffusivity. This problem is interesting because, if a centred discrete scheme is employed in the 
numerical representation of (4), there exists a limiting grid Peclet number beyond which the exact 
numerical solution of (4) becomes oscillatory (see References 2-5 for a detailed discussion of this 
behaviour). 

The case of interest here is considering a fixed number of space increments and a high enough Pe, 
so as to force the ‘knee’ of the solution into the last space interval. It is well known3 that the 
numerical solution is, in this case, oscillatory. 
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Figure 1. Comparison of computed and analytical solutions for the advection-diffusion equation.---: analytic solution; 
black symbols: corrected iterative solution; open symbols: standard iterative solution; b&w symbols: coincident computed 

results 

The approximate analytical solution of (4), for a high Pe,  can be written as follows: 

(The exact solution is 

Let us now consider the results so obtained. Figure 1 shows the solutions for several values of Pe, 
employing 10 space intervals (we denote the space interval as k from here on). Then k = 0.1. By 
simply setting F as zero in the computer code, the results of the standard iterative technique may be 
obtained. For low Pe, the two techniques give identical results. As P e  increases the results obtained 
with the corrected iterative technique are much better than the ones obtained with the standard 
technique. 

The corrected iterative technique also works very well for P e  = lo4, lo5 and infinity, showing 
very slight oscillations (of the order of lo-’ in every node). Of course, no one should ask for such a 
solution with this small number of nodes and constant spacing; nevertheless, the computed results 
are interesting. 

The case with P e  = 60 is of particular interest because the ‘knee’ reaches the last interval. In this 
case the computed result (u = 0.674 x LO-’ for x = 0.9) is coincident with the analytical result to 
three significant digits. It is worth mentioning that the results discussed above supply a better 
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approximation than the ones obtained by means of the Galerkin method with a finer grid (see 
Reference 2, chapter 5). 

The results shown above can be explained in terms of the exact algebraic solution ofequation (3),  
assuming that convergence to ‘steady state’ has been achieved. If we approximate equation (4) by 
means of centred differences, as stated above, then the solution of the difference equation is5 

where 
em = Urn - F ,  = Clzm + C,, 

z = (1 + S)/(l - 8);28 = P e / M ; M  = k-’ 
The integration constants C, and C, are determined considering that F does not necessarily satisfy 
the boundary conditions imposed by equation (4). In fact, from (5 ) ,  F(0) = exp( - Pe). Then 

e, = - exp( - 2M0);  eM = 0. 

After determining C, and C, from the given boundary conditions, equation (6) becomes 

Now the behaviour of the solution of (4) with the present technique can be explained. If we assume 
that the grid Peclet number is small as compared with M ,  then 

If Pe = 0, then Urn = x, which is coincident with the analytical solution. When Pe < 0.5 and M = 10, 
the error of equation (8) with respect to the analytical solution is lower than over all the grid 
nodes. 

On the other hand, when Pe -+ a, e, z 0 and eM = 0; then em = 0 and the solution tends to be 
coincident with equation (5). It must be remembered that the boundary conditions, as shown in (4), 
still hold for u. 

CONCLUSIONS 

We have shown that the numerical solution of a particular, although important, problem can be 
improved by simply considering our knowledge of the asymptotic behaviour of the analytical 
solution. This is also the case for many important problems in computational physics, and research 
is now underway in this field. Some preliminary experiments with Burgers’ equation, employing a 
linearized operator, resulted in similar trends. The aim of future work is improving the behaviour of 
the numerical solution of the Navier-Stokes equations in the vicinity of a wall, particularly the case 
of very high Raleigh numbers (i.e. > lo7) for free convective flows. 
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